Package: PPSFS 0.1.0

Zengchao Xu

PPSFS: Partial Profile Score Feature Selection in High-Dimensional Generalized Linear Interaction Models

This is an implementation of the partial profile score feature selection (PPSFS) approach to generalized linear (interaction) models. The PPSFS is highly scalable even for ultra-high-dimensional feature space. See the paper by Xu, Luo and Chen (2021, <doi:10.4310/21-SII706>).

Authors:Zengchao Xu [aut, cre], Shan Luo [aut], Zehua Chen [aut]

PPSFS_0.1.0.tar.gz
PPSFS_0.1.0.zip(r-4.5)PPSFS_0.1.0.zip(r-4.4)PPSFS_0.1.0.zip(r-4.3)
PPSFS_0.1.0.tgz(r-4.4-x86_64)PPSFS_0.1.0.tgz(r-4.4-arm64)PPSFS_0.1.0.tgz(r-4.3-x86_64)PPSFS_0.1.0.tgz(r-4.3-arm64)
PPSFS_0.1.0.tar.gz(r-4.5-noble)PPSFS_0.1.0.tar.gz(r-4.4-noble)
PPSFS_0.1.0.tgz(r-4.4-emscripten)PPSFS_0.1.0.tgz(r-4.3-emscripten)
PPSFS.pdf |PPSFS.html
PPSFS/json (API)
NEWS

# Install 'PPSFS' in R:
install.packages('PPSFS', repos = c('https://paradoxical-rhapsody.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/paradoxical-rhapsody/ppsfs/issues

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3

On CRAN:

openblascpp

2.70 score 1 stars 135 downloads 2 exports 9 dependencies

Last updated 3 years agofrom:25ecc372b8. Checks:1 OK, 8 NOTE. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKJan 21 2025
R-4.5-win-x86_64NOTEJan 21 2025
R-4.5-linux-x86_64NOTEJan 21 2025
R-4.4-win-x86_64NOTEJan 21 2025
R-4.4-mac-x86_64NOTEJan 21 2025
R-4.4-mac-aarch64NOTEJan 21 2025
R-4.3-win-x86_64NOTEJan 21 2025
R-4.3-mac-x86_64NOTEJan 21 2025
R-4.3-mac-aarch64NOTEJan 21 2025

Exports:ppsfsppsfsi

Dependencies:brglm2enrichwithlatticeMASSMatrixnnetnumDerivRcppRcppArmadillo